

Prime Recipient: Nexceris, LLC

PI: Neil J. Kidner

Sub-Recipients: N/A

Location: Lewis Center, OH

Phase I SBIR Project

DOE: \$206,500

Cost Share: N/A

Total: \$206,500

Objectives

Advancing the technology product readiness by systematic reduction of technical and commercial risk

- Technical risk through structured DFMEA
- Implement cost-reduction opportunities
- Define manufacturing cost and scale-up roadmap

250-Wh module demonstration of key technology benefits

Relevance and Outcomes/Impact

Enhance the economic and energy security of the U.S

- Creation of a new battery manufacturing infrastructure
- Supported by a secure domestic supply-chain

Problem

- ▶ To balance intermittent renewables with baseload assets and maintain grid stability, a massive expansion of long-duration (6-24 hours) energy storage is required.
- Li-ion batteries address shorter duration storage but become cost-prohibitive for longer duration and are inherently unsafe.

Solution

- Nexceris is developing a new energy storage technology that promises:
 - ▶ Low-cost
 - ▶ Inherently Safe
 - ► Intraday duration energy storage

Nexceris is engaged in technology development throughout the energy storage spectrum

Short-term (< 4h)

Seasonal storage

Voice of Customer Materials Synthesis

Ceramic Fabrication
Manufacturing

Value Proposition Element	Description	Value Impact
Safety	No risk of fireFail safe technologyNo risk of propagation	 Enables technology to be used in locations where Li-ion is considered too risky (i.e., urban environments) Reduces siting and permitting risk / project execution risk Reduces balance-of-system and potential insurance costs
Enhanced Operability	 Longer duration (6-24hrs) Greater ambient operating range More flexible than Li-ion Greater stability Improved asset visibility 	 Longer duration expands use-cases Greater ambient temperature operating range potentially reduces HVAC and O&M expense and allows more flexible operations
Purpose-built Design	Resilient designModularityScalable size	 Design flexibility allows freedom in tailoring storage assets to specific applications Hardened system more resilient against physical attack
Supply Chain / Sustainability	 Abundant raw materials Recyclability reduces end-of-life costs No critical materials 	 Abundant raw materials reduce supply chain risk and may lower cost long-term U.S. manufacture reduces risk of supply chain interruption Aligns with corporate, state sustainability goals potentially lower end-of-life / decommissioning costs

Task	Objective	Milestones
Task 1 Value-Proposition Definition	 Understand unmet market needs Establish narrative for technology to meet these needs Create commercial pull 	 Value-proposition defined, guided by value-chain Cell design review completed Commitment from at least one industrial partner to support on-site demonstration in Phase 2
Task 2 Technical Risk Reduction	 Drive out technical risk (> 50 % reduction in RPN achieved Reproducible cell established 	 Define cell architecture Down-select electrolyte membrane approach
Task 3 Cost Reduction Implementation	 Roadmap <\$50/kWh defined 	 Manufacturing cost model/roadmap established Evaluation of lower-cost cell-chemistry completed Achieve 50 % lower cell cost
Task 4 250 Wh Module Demonstration	 Demonstrate key technology benefits 	 Thermal management of 20-cell pack design validated Successful completion of 250 Wh stand-alone module demonstration

Nexceris is always looking for value-chain partners to help better understand the market, technology development and commercialization

Dr. Neil Kidner

Director, Battery Business Unit

Nexceris LLC

404 Enterprise Drive, Lewis Center, OH, 43035

(614) 802-7105

n.kidner@nexceris.com

